If it's not what You are looking for type in the equation solver your own equation and let us solve it.
s^2-16=81
We move all terms to the left:
s^2-16-(81)=0
We add all the numbers together, and all the variables
s^2-97=0
a = 1; b = 0; c = -97;
Δ = b2-4ac
Δ = 02-4·1·(-97)
Δ = 388
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{388}=\sqrt{4*97}=\sqrt{4}*\sqrt{97}=2\sqrt{97}$$s_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{97}}{2*1}=\frac{0-2\sqrt{97}}{2} =-\frac{2\sqrt{97}}{2} =-\sqrt{97} $$s_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{97}}{2*1}=\frac{0+2\sqrt{97}}{2} =\frac{2\sqrt{97}}{2} =\sqrt{97} $
| s@-16=81 | | 4x+13=55 | | (2.0x-1.1)/5=0.5 | | 5x^2+28x=-1 | | (6-x)/2=2 | | 15x+4=18x-8 | | 50-u=187 | | x^2=(9/16) | | 6x+5=3x×14 | | (y-1/y-7)+1=y-4/y-3 | | 8+(x)/3=15 | | x^=9/16 | | 15x-6=10x-12 | | (x)/9=8 | | 28x-12=63x+28 | | 124=164–20j | | 6x-3=4x-12 | | 12x-5=-30x-12 | | 8/18=36/n | | 30*2x=40 | | 30x2x=40 | | 2u-10+4u+9=38 | | 2x-3=8x-6 | | -16t^2+24t-18=0 | | 12x+4=3x+24 | | (8x-64)+64=72 | | 23p^2+31p+12=0 | | 15q^2+22Q+8=0 | | 15q^2+22Q+8=) | | 3p^2-10P+7=0 | | -9-(9x-6)=3(4x=6) | | 6(-2x+4)=5x-(4x-7) |